SOLAREUM
HomeTelegramTwitterWebsiteBuy $SRM
  • ๐Ÿ‘‹Solareum - Layer 1 Whitepaper
  • Solareum (SRM)
    • ๐Ÿ“ƒExecutive Summary
    • ๐Ÿ”ฅSolareumโ€™s Solution
    • โญSolareumโ€™s Value Proposition
    • ๐Ÿ’ซFinal Thoughts
  • About Solareum
    • ๐Ÿ‘ฉโ€๐ŸซWhat is SolareumChain?
    • โž—Mathematical Analysis of Validators
  • Solareum Proof of Generation
    • ๐ŸงŠSolareum Proof of Generation
    • ๐Ÿ›ก๏ธThe BLS12-381 Elliptic Curve for zk-SNARK Proofs
      • FPGA Hardware
  • BLS Key Generation Signature Scheme Security
    • โ™ป๏ธBLS Key Generation
      • Extract
      • Expand
      • IKM to lamport SK
      • parent SK to lamport PK
      • HKDF mod r
      • derive child SK
      • derive master SK
    • ๐Ÿ’ฑPost-quantum security backup upgrade
  • SolareumChain Algorithmic Security
    • ๐Ÿ”SolareumChain Algorithmic Security
    • ๐Ÿ”ฎBLS signature aggregation and Multisig security
      • BLS Signature Aggregation
      • Multisig Security
      • BLS signature aggregation definitions
    • ๐ŸซProving security definition references
      • Gedankenexperiment Setup
      • Gedankenexperiment Signature queries
      • Gedankenexperiment Forgery
      • Security and co-CDH Assumption
    • โœณ๏ธAdversaries and message query theorems
    • ๐Ÿ’ Multi-Input Transactions and Transaction Validation Caching
      • SolareumChain Multi-Input Transactions
      • SolareumChain Transaction Validation Caching
  • SolareumChain ReFi Implementation
    • ๐Ÿ’ฅProof of Hold (PoH)
    • ๐Ÿง‡SolareumChain Inherited NFT Multipliers
  • SolareumChain Architecture and PoG Math
    • โ›“๏ธSolareumChain Architecture and PoG Math
    • ๐Ÿ’ฃSocietal Impact of Blockchain Technology
    • ๐Ÿ’กEnergy Generation Analysis and Correlation
    • ๐Ÿ”‹Energy Correlation Assurance Functions
    • ๐Ÿงฉzk-SNARK Validation
      • Case Study I: Proof of Hold and no Proof of Generation
      • Case Study II: No Proof of Hold and Proof of Generation
      • Case Study III: Proof of Hold and Proof of Generation
    • ๐ŸŽดSolareumChain Address Generation
    • ๐ŸŽฑSolareumChain Genesis Architecture
    • ๐ŸฑDistributed Ledger Technology Energy Sustainability
    • ๐ŸŒ‰SolareumChain Bridge
    • โšกSufficiency of Sub 128-bit Security for Pairing-Friendly Curves on SolareumChain
  • Other iNfo
    • ๐Ÿ“Conclusion
  • Community
    • ๐ŸŒWebsite
    • ๐ŸŒ Telegram
    • โœ–๏ธTwitter
Powered by GitBook
On this page
  1. SolareumChain Architecture and PoG Math

zk-SNARK Validation

A BLS 12-381 signature of a zk-SNARK of verified energy generation is a required submission to have validation proven, that is, an algorithm runs to determine that the characteristic function output of the energy validator claim is non-zero, and if so provides either a 0 or a 1 as attached to the submission which either accepts the transaction as part of the validators or eliminates it from the consensus algorithm. The main hardware task of the FPGA running PoG is in the characteristic function calculation corresponding to the tracking of ensuring electrons are not double spent as calculated over a displaced current whereas recycled current will yield characteristic function outputs of zeros and thus not have weighted input into the PoG algorithm.

PreviousEnergy Correlation Assurance FunctionsNextCase Study I: Proof of Hold and no Proof of Generation

Last updated 1 year ago

๐Ÿงฉ