SOLAREUM
HomeTelegramTwitterWebsiteBuy $SRM
  • ๐Ÿ‘‹Solareum - Layer 1 Whitepaper
  • Solareum (SRM)
    • ๐Ÿ“ƒExecutive Summary
    • ๐Ÿ”ฅSolareumโ€™s Solution
    • โญSolareumโ€™s Value Proposition
    • ๐Ÿ’ซFinal Thoughts
  • About Solareum
    • ๐Ÿ‘ฉโ€๐ŸซWhat is SolareumChain?
    • โž—Mathematical Analysis of Validators
  • Solareum Proof of Generation
    • ๐ŸงŠSolareum Proof of Generation
    • ๐Ÿ›ก๏ธThe BLS12-381 Elliptic Curve for zk-SNARK Proofs
      • FPGA Hardware
  • BLS Key Generation Signature Scheme Security
    • โ™ป๏ธBLS Key Generation
      • Extract
      • Expand
      • IKM to lamport SK
      • parent SK to lamport PK
      • HKDF mod r
      • derive child SK
      • derive master SK
    • ๐Ÿ’ฑPost-quantum security backup upgrade
  • SolareumChain Algorithmic Security
    • ๐Ÿ”SolareumChain Algorithmic Security
    • ๐Ÿ”ฎBLS signature aggregation and Multisig security
      • BLS Signature Aggregation
      • Multisig Security
      • BLS signature aggregation definitions
    • ๐ŸซProving security definition references
      • Gedankenexperiment Setup
      • Gedankenexperiment Signature queries
      • Gedankenexperiment Forgery
      • Security and co-CDH Assumption
    • โœณ๏ธAdversaries and message query theorems
    • ๐Ÿ’ Multi-Input Transactions and Transaction Validation Caching
      • SolareumChain Multi-Input Transactions
      • SolareumChain Transaction Validation Caching
  • SolareumChain ReFi Implementation
    • ๐Ÿ’ฅProof of Hold (PoH)
    • ๐Ÿง‡SolareumChain Inherited NFT Multipliers
  • SolareumChain Architecture and PoG Math
    • โ›“๏ธSolareumChain Architecture and PoG Math
    • ๐Ÿ’ฃSocietal Impact of Blockchain Technology
    • ๐Ÿ’กEnergy Generation Analysis and Correlation
    • ๐Ÿ”‹Energy Correlation Assurance Functions
    • ๐Ÿงฉzk-SNARK Validation
      • Case Study I: Proof of Hold and no Proof of Generation
      • Case Study II: No Proof of Hold and Proof of Generation
      • Case Study III: Proof of Hold and Proof of Generation
    • ๐ŸŽดSolareumChain Address Generation
    • ๐ŸŽฑSolareumChain Genesis Architecture
    • ๐ŸฑDistributed Ledger Technology Energy Sustainability
    • ๐ŸŒ‰SolareumChain Bridge
    • โšกSufficiency of Sub 128-bit Security for Pairing-Friendly Curves on SolareumChain
  • Other iNfo
    • ๐Ÿ“Conclusion
  • Community
    • ๐ŸŒWebsite
    • ๐ŸŒ Telegram
    • โœ–๏ธTwitter
Powered by GitBook
On this page
  1. SolareumChain Algorithmic Security

SolareumChain Algorithmic Security

In the ever-evolving landscape of blockchain technology and Renewable Energy, SolareumChain is positioning itself as an industry leader in relation to both innovation as well as sustainability. At the heart of our revolutionary platform lies an intricate web of algorithms we have meticulously crafted to safeguard the decentralized energy ecosystem. Our commitment to algorithmic security goes beyond the ordinary, ensuring that every transaction, every data point, and every interaction within the Solareum ecosystem is fortified with the highest level of protection. With a laser-sharp focus on the technical nuances of security, SolareumChain employs cutting-edge cryptographic techniques, Byzantine fault tolerance, and upcoming Layer 1 contract audits to guarantee the integrity and trustworthiness of our network. As the future of decentralized energy solutions unfolds, trust in security of Solareums underlying technology becomes paramount. SolareumChain stands at the forefront by setting new standards in algorithmic security that redefine the possibilities of a sustainable energy future.

PreviousPost-quantum security backup upgradeNextBLS signature aggregation and Multisig security

Last updated 1 year ago

๐Ÿ”