SOLAREUM
HomeTelegramTwitterWebsiteBuy $SRM
  • ๐Ÿ‘‹Solareum - Layer 1 Whitepaper
  • Solareum (SRM)
    • ๐Ÿ“ƒExecutive Summary
    • ๐Ÿ”ฅSolareumโ€™s Solution
    • โญSolareumโ€™s Value Proposition
    • ๐Ÿ’ซFinal Thoughts
  • About Solareum
    • ๐Ÿ‘ฉโ€๐ŸซWhat is SolareumChain?
    • โž—Mathematical Analysis of Validators
  • Solareum Proof of Generation
    • ๐ŸงŠSolareum Proof of Generation
    • ๐Ÿ›ก๏ธThe BLS12-381 Elliptic Curve for zk-SNARK Proofs
      • FPGA Hardware
  • BLS Key Generation Signature Scheme Security
    • โ™ป๏ธBLS Key Generation
      • Extract
      • Expand
      • IKM to lamport SK
      • parent SK to lamport PK
      • HKDF mod r
      • derive child SK
      • derive master SK
    • ๐Ÿ’ฑPost-quantum security backup upgrade
  • SolareumChain Algorithmic Security
    • ๐Ÿ”SolareumChain Algorithmic Security
    • ๐Ÿ”ฎBLS signature aggregation and Multisig security
      • BLS Signature Aggregation
      • Multisig Security
      • BLS signature aggregation definitions
    • ๐ŸซProving security definition references
      • Gedankenexperiment Setup
      • Gedankenexperiment Signature queries
      • Gedankenexperiment Forgery
      • Security and co-CDH Assumption
    • โœณ๏ธAdversaries and message query theorems
    • ๐Ÿ’ Multi-Input Transactions and Transaction Validation Caching
      • SolareumChain Multi-Input Transactions
      • SolareumChain Transaction Validation Caching
  • SolareumChain ReFi Implementation
    • ๐Ÿ’ฅProof of Hold (PoH)
    • ๐Ÿง‡SolareumChain Inherited NFT Multipliers
  • SolareumChain Architecture and PoG Math
    • โ›“๏ธSolareumChain Architecture and PoG Math
    • ๐Ÿ’ฃSocietal Impact of Blockchain Technology
    • ๐Ÿ’กEnergy Generation Analysis and Correlation
    • ๐Ÿ”‹Energy Correlation Assurance Functions
    • ๐Ÿงฉzk-SNARK Validation
      • Case Study I: Proof of Hold and no Proof of Generation
      • Case Study II: No Proof of Hold and Proof of Generation
      • Case Study III: Proof of Hold and Proof of Generation
    • ๐ŸŽดSolareumChain Address Generation
    • ๐ŸŽฑSolareumChain Genesis Architecture
    • ๐ŸฑDistributed Ledger Technology Energy Sustainability
    • ๐ŸŒ‰SolareumChain Bridge
    • โšกSufficiency of Sub 128-bit Security for Pairing-Friendly Curves on SolareumChain
  • Other iNfo
    • ๐Ÿ“Conclusion
  • Community
    • ๐ŸŒWebsite
    • ๐ŸŒ Telegram
    • โœ–๏ธTwitter
Powered by GitBook
On this page
  1. SolareumChain Algorithmic Security
  2. BLS signature aggregation and Multisig security

Multisig Security

When you want to secure something important online, like your cryptocurrency wallet or sensitive documents, Multisig security lets you use multiple โ€œkeysโ€ or signatures to access it. But hereโ€™s the unique part: you donโ€™t need all the keys at once; just a certain number of them. For example, you might need at least two out of three keys to access your digital wallet.

By Solareum emphasizing our use of Multisig security, weโ€™re telling you that we take your online security very seriously. Weโ€™re using a smart system that involves multiple layers of protection, making it incredibly hard for unauthorized people to access your valuable digital assets.

In a nutshell, BLS Signature Aggregation and Multisig security are like the superheroes of blockchain safety, making transactions faster and your digital currencies more secure.

PreviousBLS Signature AggregationNextBLS signature aggregation definitions

Last updated 1 year ago

๐Ÿ”ฎ